Rare cancers group

Nat Rothman, Sholom Wacholder, Isis Mikhail

What is rare?

- <15/100K, <40K cases in US per year
- NB: Children's cancers outside our mandate

Rare cancers: annual cases and deaths

•	Pancreas	31,860	31,270
•	Uterine cervix	10,520	3,900
•	Uterine corpus	40,320	7,090
•	Ovary	25,580	16,090
•	Vulva	3,970	850
•	Testis	8,980	360
•	Penis & other genital, male	1,570	270
•	Kidney & renal pelvis	35,710	12,480
•	Ureter, ther urinary organs	2,450	690
•	Bones & joints	2,440	1,300
•	Soft tissue (including heart)	8,680	3,660
•	Brain	18,400	12,690
•	Endocrine system	25,520	2,440
•	Thyroid	23,600	1,460
•	Hodgkin's disease	7,880	1,320
•	Multiple myeloma	15,270	11,070
•	Leukemia	33,440	23,300
•	Non-Hodgkin's lymphoma	53,370	19,410

Why study rare tumors?

- Some are highly lethal
- Some have rising rates
- May be informative about etiology of more common tumors
- N. Risch: "lower incidence tends to go with more heritability (lambda)"
- Simpler etiology than common cancers?
 - e.g., RB, angiosarcoma, clear cell ca of vagina
- Disproportionate in some ethnic groups
- YPLL from cancer at young age
- Total incidence of all rare tumors is substantial

Rationale for study first study of a rare tumor

 Compare with study # 101 of a common tumor breast

How to study the etiology of rare tumors

- Gather data
 - Descriptive data from SEER
 - Existing cohorts
 - With and without biospecimens
 - Number of cases
 - Qx data available?
 - Biospecimen availability?
 - Existing clinical trials of rare tumors

Study design options-Cohorts

- Value to studies of modest size using existing cohorts
- Should be able to identify moderate to strong risk factors
 - Qx based analyses
 - Biologic samples
- How to obtain access to qx data and biologic samples?

Clinical trials

- Feasibility of adding etiology to tx trials of rare diseases
 - Precedent
 - Childhood cancer
 - Methodologic issues
 - e.g., Cases in trials may have worst prognosis
 - Yes, but ...
 - We cannot afford to be overly fastidious
 - Strong apparent risk factors are robust to small biases

De novo designs

Why?

- Follow up hypotheses from cohort mining
- Functional assays/phenotypes from samples, fresh tissue
- Subgroups with molecular categorization
- Integrate with studies of prognosis and tx

Basic design

- Study multiple kinds of rare tumors
- Hospital based
 - At major cancer centers
 - "that's where the money is"
- Common hospital or clinic controls
- Single qx, biospecimen collection protocol
- Methodological challenges
 - Control selection
 - Surmountable

Building infrastructure

- Take advantage of GCRCs
- Supplemental funds to Cancer Centers to explore feasibility